Quantcast
Channel: Gaurav Tiwari » Problems
Viewing all articles
Browse latest Browse all 38

A Problem on Infinite Sum and Recurrence Relations

$
0
0

Problem

Consider the infinite sum
\mathbb{S} = \dfrac {a_0} {10^0} + \dfrac {a_1} {10^2} + \dfrac {a_2} {10^4} + ....... where the sequence \{a_n\} is defined by a_0=a_1=1 , and the recurrence relation a_n=20a_{n-1} + 12 a_{n-2} for all positive integers n \ge 2 . If \sqrt {\mathbb {S} } can be expressed in the form \dfrac {a} {\sqrt{b}} where a & b are relatively prime positive integers. Determine the ordered pair (a, \, b) .

Solution

As the recurrence relation states a_n-20a_{n-1} - 12 a_{n-2} =0 , we shall reform the infinite sum into the same pattern (have a deep look);
\mathbb{S} - \dfrac {20 \mathbb{S} } {10^2} - \dfrac {12 \mathbb{S} } {10^4}
= ( \dfrac {a_0} {10^0} + \dfrac {a_1} {10^2} + \dfrac {a_2} {10^4} + \dfrac {a_3} {10^6} + .... ) - ( \dfrac {20a_0} {10^2} + \dfrac {20a_1} {10^4} + \dfrac {20a_2} {10^6} + \dfrac {20a_3} {10^8} + .... ) - ( \dfrac {12a_0} {10^4} + \dfrac {12a_1} {10^6} + \dfrac {12a_2} {10^8} + \dfrac {12a_3} {10^10} + .... )

After Simplifying and arranging

= \dfrac {a_0} {10^0} + \dfrac {a_1} {10^2} - \dfrac {20a_0} {10^2} + \dfrac {a_2 -20a_1-12a_0} {10^4} + \dfrac {a_3-20a_2-12a_1} {10^6} + \dfrac {a_4-20a_3-12a_2} {10^8} + . . . . . . \infty
Now, as {the recurrence relation is}
a_n-20a_{n-1}-12a_{n-2} =0 for all n \ge 2 , all terms except first three are zero in R.H.S.
Hence we have,
\mathbb{S} - \dfrac {20 \mathbb{S} } {10^2} - \dfrac {12 \mathbb{S} } {10^4} = \dfrac {a_0} {10^0} + \dfrac {a_1} {10^2} - \dfrac {20a_0} {10^2}
and substituting a_0 =a_1=1 , we have
\mathbb{S} - \dfrac {20 \mathbb{S} } {100} - \dfrac {12 \mathbb{S} } {10000}
= \dfrac {1} {1} + \dfrac {1} {100} - \dfrac {20} {100}
or
\dfrac {7988 \mathbb{S}} {10000} = \dfrac {81} {100}
so,
\mathbb{S} =2025/1997
From the Problem,
\sqrt {\mathbb{S}} = \sqrt{2025/1997} = 45/\sqrt{1997} =a/\sqrt{b}
So, the desired ordered pair is (a, b) = (45, 1997) .


Filed under: Math, Problems

Viewing all articles
Browse latest Browse all 38

Trending Articles